MODERN SPECTRUM ANALYSIS

- Methods based on linear models
 - AR
 - MA
 - ARMA
- AR method and Maximum Entropy
- "Maximum Likelihood" method

MODERN SPECTRUM ANALYSIS (cont'd.)

- Subspace methods
 - Pisarenko
 - MUSIC
 - Minimum Norm
 - Principal Components Linear Prediction
 - ESPRIT

LIMITATIONS OF CLASSICAL METHODS

• Classical methods are limited in resolution by the data length.

• Methods based on a model for the process can overcome this limitation.

SPECTRAL ESTIMATION USING A LINEAR MODEL

MODEL FOR THE PROCESS

SPECTRAL ESTIMATE

$$\hat{S}(e^{j\omega}) = \mathcal{K}_{\mathsf{O}} |H_{ca}(e^{j\omega})|^2$$

FORMS OF SPECTRAL ESTIMATES

AR

$$\hat{S}_{AR}(e^{j\omega}) = \frac{|b_0|^2}{|A(e^{j\omega})|^2} = \frac{\sigma_P^2}{|A(e^{j\omega})|^2}$$

MA

$$\widehat{S}_{MA}(e^{j\omega}) = |B(e^{j\omega})|^2$$

ARMA

$$\hat{S}_{ARMA}(e^{j\omega}) = \left| \frac{B(e^{j\omega})}{A(e^{j\omega})} \right|^2$$

SPECTRUM ESTIMATION BY AR MODELING

LINEAR PREDICTION

AR MODELING

PROPERTIES OF THE AR MODEL

CORRELATION MATCHING

$$R_{x'}[l] = R_x[l]$$
; $l = 0, \pm 1, \pm 2, \dots, \pm P$

CORRELATION EXTENSION

$$R_{x'}[l] + a_1 R_{x'}[l-1] + a_2 R_{x'}[l-2] + \dots + a_P R_{x'}[l-P] = \underbrace{R_{wx'}[l]}_{0 \text{ for } l>0}$$

$$R_{x'}[l] = -a_1 R_{x'}[l-1] - a_2 R_{x'}[l-2] - \dots - a_P R_{x'}[l-P], \quad l > 0$$

MATCHING AND EXTENSION OF THE CORRELATION FUNCTION

MAXIMUM ENTROPY PROPERTY

- The AR model of order P matches the correlation function up to lag P.
- The AR model extends the correlation function in a way to maximize entropy of the resulting process.

In other words . . .

 Of all processes that could match and extend the given correlation function, the AR process is the process with maximum entropy.

PROOF OF MAXIMUM ENTROPY

The entropy for p+1 samples of a zero-mean complex Gaussian random process is

$$\mathcal{H}_p = \mathcal{E}\left\{-\ln f_{\boldsymbol{x}_p}(\boldsymbol{x}_p)\right\} = (p+1)(1+\ln \pi) + \ln|\mathbf{R}_{\boldsymbol{x}}^{(p)}|$$

where

$$\mathbf{R}_{x}^{(p)} = \begin{bmatrix} R_{x}[0] & R_{x}[-1] & \cdots & R_{x}[-p] \\ R_{x}[1] & R_{x}[0] & \cdots & R_{x}[-p+1] \\ \vdots & \vdots & \vdots & \vdots \\ R_{x}[p] & R_{x}[p-1] & \cdots & R_{x}[0] \end{bmatrix}$$

- Have terms $R_x[0], R_x[1], \ldots, R_x[P]$.
- Need to choose $R_x[P+1], R_x[P+2], \ldots$ to maximize \mathcal{H}_p for all values of p.

First choose $R_x[P+1]$ to maximize $|\mathbf{R}_x^{(P+1)}|$:

$$|\mathbf{R}_{x}^{(P+1)}| = \begin{vmatrix} R_{x}[0] & R_{x}[-1] & \cdots & R_{x}[-P] & R_{x}[-P-1] \\ R_{x}[1] & R_{x}[0] & \cdots & R_{x}[-P+1] & R_{x}[-P] \end{vmatrix}$$

$$|\mathbf{R}_{x}^{(P+1)}| = \begin{vmatrix} \vdots & \vdots & \vdots & \vdots \\ R_{x}[P] & R_{x}[P-1] & \cdots & R_{x}[0] & R_{x}[-1] \\ R_{x}[P+1] & R_{x}[P] & \cdots & R_{x}[1] & R_{x}[0] \end{vmatrix}$$

$$= R_x^*[P+1](-1)^{P+1} \begin{vmatrix} R_x[1] & R_x[0] & \cdots & R_x[-P+1] \\ \vdots & \vdots & \vdots & \vdots \\ R_x[P] & R_x[P-1] & \cdots & R_x[0] \\ R_x[P+1] & R_x[P] & \cdots & R_x[1] \end{vmatrix}$$

+ other terms

A necessary condition for the maximum is

$$\nabla_{R_x^*[P+1]} |\mathbf{R}_x^{(P+1)}| = (-1)^{P+1} \begin{vmatrix} R_x[1] & R_x[0] & \cdots & R_x[-P+1] \\ \vdots & \vdots & \vdots & \vdots \\ R_x[P] & R_x[P-1] & \cdots & R_x[0] \\ R_x[P+1] & R_x[P] & \cdots & R_x[1] \end{vmatrix} = 0$$

It can be shown that this condition *indeed* produces a maximum, i.e.,

$$\left(\nabla_{R_x R_x}^2 |\mathbf{R}_{\bm{x}}^{(P+1)}|\right) \cdot \left(\nabla_{R_x^* R_x^*}^2 |\mathbf{R}_{\bm{x}}^{(P+1)}|\right) - \left(\nabla_{R_x R_x^*}^2 |\mathbf{R}_{\bm{x}}^{(P+1)}|\right)^2 < 0$$

and

$$\nabla^2_{R_x R_x^*} |\mathbf{R}_{\boldsymbol{x}}^{(P+1)}| < 0$$

(see text).

Since the determinant is zero, the columns are linearly dependent.

$$\begin{bmatrix} R_x[1] & R_x[0] & \cdots & R_x[-P+1] \\ \vdots & \vdots & \vdots & \vdots \\ R_x[P] & R_x[P-1] & \cdots & R_x[0] \\ R_x[P+1] & R_x[P] & \cdots & R_x[1] \end{bmatrix} \begin{bmatrix} 1 \\ c_1 \\ \vdots \\ c_P \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 0 \end{bmatrix}$$

If a top row is added...

$$\begin{bmatrix} R_x[0] & R_x[-1] & \cdots & R_x[-P] \\ R_x[1] & R_x[0] & \cdots & R_x[-P+1] \\ \vdots & \vdots & \vdots & \vdots \\ R_x[P] & R_x[P-1] & \cdots & R_x[0] \\ ---- & ---- & ---- & ---- \\ R_x[P+1] & R_x[P] & \cdots & R_x[1] \end{bmatrix} \begin{bmatrix} 1 \\ c_1 \\ \vdots \\ c_P \end{bmatrix} = \begin{bmatrix} \sigma^2 \\ 0 \\ \vdots \\ 0 \\ - \\ 0 \end{bmatrix}$$

this defines the AR model and extension of R_x to $R_x[P+1]$.

A repetition of the analysis for extension to $R_x[P+2]$ leads to

$$\begin{bmatrix} R_x[0] & R_x[-1] & \cdots & R_x[-P-1] \\ R_x[1] & R_x[0] & \cdots & R_x[-P] \\ \vdots & \vdots & \vdots & \vdots \\ R_x[P+1] & R_x[P] & \cdots & R_x[0] \\ ---- & ---- & ---- & ---- \\ R_x[P+2] & R_x[P+1] & \cdots & R_x[1] \end{bmatrix} \begin{bmatrix} 1 \\ c'_1 \\ \vdots \\ c'_{P} \\ c'_{P+1} \end{bmatrix} = \begin{bmatrix} \sigma'^2 \\ 0 \\ \vdots \\ 0 \\ --- \\ 0 \end{bmatrix}$$

This can be satisfied by taking $c'_1 = c_1, \dots, c'_P = c_P, c'_{P+1} = 0$. The bottom row then provides the correlation extension

$$R_x[P+2] = -c_1 R_x[P+1] - \cdots - c_P R_x[2]$$

This procedure is continued to find $R_x[P+3]$, $R_x[P+4]$, . . .

BURG'S PROOF OF MAXIMUM ENTROPY

• Start with the entropy (per sample) for a Gaussian process

$$\Delta \mathcal{H} = \frac{1}{2\pi} \int_{-\pi}^{\pi} \ln S_{x'}(e^{j\omega}) d\omega + \text{const.}$$

Maximize this subject to constraints

$$R_{x'}[l] = \frac{1}{2\pi} \int_{-\pi}^{\pi} S_{x'}(e^{j\omega}) e^{j\omega l} d\omega = R_x[l] ; \quad l = 0, \pm 1, \dots, \pm P$$

- Show that an all-pole model is required
- Show that the all-pole model is the AR model

The necessary condition for a maximum is

$$\nabla_{R_{x'}^{*}[l]} \Delta \mathcal{H} = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{1}{S_{x'}(e^{j\omega})} \left(\nabla_{R_{x'}^{*}[l]} S_{x'}(e^{j\omega}) \right) d\omega = 0 ; \quad |l| > P$$

Note that $S_{x'}(e^{j\omega})$ can be written as

$$\sum_{k=-\infty}^{\infty} R_{x'}[k]e^{-j\omega k} = \sum_{k'=-\infty}^{\infty} R_{x'}^*[k']e^{j\omega k'} \implies \nabla_{R_{x'}^*[l]}S_{x'}(e^{j\omega}) = e^{j\omega l}$$

Therefore

$$\nabla_{R_{x'}^*[l]} \Delta \mathcal{H} = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{1}{S_{x'}(e^{j\omega})} e^{j\omega l} d\omega = 0 ; \quad |l| > P$$

The condition

$$\nabla_{R_{x'}^{*}[l]} \Delta \mathcal{H} = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{1}{S_{x'}(e^{j\omega})} e^{j\omega l} d\omega = g[l] = 0 ; \quad |l| > P$$

states that the sequence g[l] with transform $1/S_{x'}(z)$ has finite length, *i.e.*,

$$S_{x'}(z) = \frac{1}{\sum_{l=-P}^{P} g[l] z^{-l}} = \frac{\mathcal{K}_{o}}{\left(\sum_{n=0}^{P} c_{n} z^{-n}\right) \left(\sum_{k=0}^{P} c_{k}^{*} z^{k}\right)} \qquad (c_{0} = 1)$$

Therefore the process can be modeled as white noise driving the all-pole filter

$$H_{ca}(z) = \frac{1}{\sum_{n=0}^{P} c_n z^{-n}}$$

The form of the power spectral density implies

$$\begin{split} \frac{\mathcal{K}_{0}}{\sum_{n=0}^{P} c_{n}z^{-n}} &= \left(\sum_{k=0}^{P} c_{k}^{*}z^{k}\right) S_{x'}(z) = \sum_{k=0}^{P} c_{k}^{*}z^{k} \sum_{l=-\infty}^{\infty} R_{x'}[l]z^{-l} \\ &= \sum_{l'=-\infty}^{\infty} \left(\sum_{k=0}^{P} c_{k}^{*}R_{x'}[l'+k]\right) z^{-l'} \qquad (l'=l-k) \\ &= \sum_{l'=-\infty}^{\infty} \left(\sum_{k=0}^{P} c_{k}R_{x'}[-l'-k]\right)^{*} z^{-l'} \\ &= \sum_{l'=-\infty}^{\infty} \left(\sum_{k=0}^{P} c_{k}R_{x'}[-l'-k]\right)^{*} z^{-l'} \end{split}$$

Finally, the last condition

$$\sum_{k=0}^{P} c_k R_{x'}[-l'-k] = \begin{cases} \mathcal{K}_0 & \text{for } l'=0\\ 0 & \text{for } l'<0 \end{cases}$$

and the requirement $R_{x'}[l]=R_x[l]$ for $|l|\leq P$ produces the Yule-Walker equations for the AR model

$$\begin{bmatrix} R_x[0] & R_x[-1] & \cdots & R_x[-P] \\ R_x[1] & R_x[0] & \cdots & R_x[-P+1] \\ \vdots & \vdots & \vdots & \vdots \\ R_x[P] & R_x[P-1] & \cdots & R_x[0] \end{bmatrix} \begin{bmatrix} 1 \\ c_1 \\ \vdots \\ c_P \end{bmatrix} = \begin{bmatrix} \mathcal{K}_0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

"MAXIMUM ENTROPY" SPECTRUM ESTIMATION

- "Maximum Entropy" is the name given by Burg to his method of spectrum estimation.
- Theoretically, any AR spectral estimate is a maximum entropy spectral estimate.
- In practice, the term is reserved to mean an AR estimate where the model parameters are computed using Burg's method.

COMPUTATION OF SPECTRAL ESTIMATES

- Efficient model-based spectral estimates can be computed with the FFT.
- Note that

$$\widehat{S}(e^{j\omega}) = \left| \frac{B(e^{j\omega})}{A(e^{j\omega})} \right|^2 = \frac{|\text{FT of sequence } \{b_n\}|^2}{|\text{FT of sequence } \{a_n\}|^2}$$

 The FT can be replaced by the DFT computed with an FFT program; for purposes of ploting, the DFT order is chosen to give a smooth plot.

"MAXIMUM LIKELIHOOD" SPECTRUM ESTIMATION

- Computed using the correlation matrix for the data
- Exhibits higher resolution than classical methods (Bartlett, Blackman-Tukey, etc.)
- Can be related to the "Maximum Entropy" method
- Also called the "Minimum Variance (Distortionless)" method

"MAXIMUM LIKELIHOOD" METHOD SPECTRUM ANALYZER INTERPRETATION

ML spectral estimate: $\hat{S}_{ML}(e^{j\omega_0}) \stackrel{\text{def}}{=} \mathcal{E}\{|y[n]|^2\}$

ML METHOD DEVELOPMENT

The FIR filter output is

$$y[n] = \sum_{k=0}^{N-1} h_{\omega_0}[k]x[n-k] = \mathbf{h}_0^T \tilde{\boldsymbol{x}}[n]$$

The filter average power is given by

$$\mathcal{P} = \mathcal{E}\left\{|y[n]|^2\right\} = \mathbf{h}_{o}^{T} \mathcal{E}\left\{\tilde{\boldsymbol{x}}[n]\tilde{\boldsymbol{x}}^{*T}[n]\right\} \mathbf{h}_{o}^{*} = \mathbf{h}_{o}^{T} \tilde{\mathbf{R}}_{\boldsymbol{x}} \mathbf{h}_{o}^{*} = \mathbf{h}_{o}^{*T} \mathbf{R}_{\boldsymbol{x}} \mathbf{h}_{o}$$

This is minimized subject to the (complex) constraint

$$H_{\omega_{\mathcal{O}}}(e^{j\omega_{\mathcal{O}}}) = \sum_{n=0}^{N-1} h_{\omega_{\mathcal{O}}}[n]e^{-j\omega_{\mathcal{O}}n} = \mathbf{w}_{\mathcal{O}}^{*T}\mathbf{h}_{\mathcal{O}} = 1$$

ML METHOD (cont'd.)

The optimization problem involves the Lagrangian

$$\mathcal{L} = \mathbf{h}_{\mathsf{O}}^{*T} \mathbf{R}_{x} \mathbf{h}_{\mathsf{O}} + \mu (1 - \mathbf{w}_{\mathsf{O}}^{*T} \mathbf{h}_{\mathsf{O}}) + \mu^{*} (1 - \mathbf{h}_{\mathsf{O}}^{*T} \mathbf{w}_{\mathsf{O}})$$

and the necessary condition

$$\nabla_{\mathbf{h}_{\mathsf{O}}^*} \mathcal{L} = \mathbf{R}_{x} \mathbf{h}_{\mathsf{O}} - \mu^* \mathbf{w}_{\mathsf{O}} = \mathbf{0} \implies \mathbf{h}_{\mathsf{O}} = \mu^* \mathbf{R}_{x}^{-1} \mathbf{w}_{\mathsf{O}}$$

The requirement $\mathbf{w}_{o}^{*T}\mathbf{h}_{o} = \mu^{*}\mathbf{w}_{o}^{*T}\mathbf{R}_{x}^{-1}\mathbf{w}_{o} = 1$ then yields

$$\mu^* = \mu = \frac{1}{\mathbf{w}_o^{*T} \mathbf{R}_{\boldsymbol{x}}^{-1} \mathbf{w}_o}$$
 so that $\mathbf{h}_o = \frac{\mathbf{R}_{\boldsymbol{x}}^{-1} \mathbf{w}_o}{\mathbf{w}_o^{*T} \mathbf{R}_{\boldsymbol{x}}^{-1} \mathbf{w}_o}$

ML METHOD (cont'd.)

The optimum narrowband filter at frequency $\omega_{\rm O}$

$$\mathbf{h}_{\mathsf{O}} = \frac{\mathbf{R}_{oldsymbol{x}}^{-1}\mathbf{w}_{\mathsf{O}}}{\mathbf{w}_{\mathsf{O}}^{*T}\mathbf{R}_{oldsymbol{x}}^{-1}\mathbf{w}_{\mathsf{O}}}$$

produces the output power

$$\mathcal{P} = \mathbf{h}_{o}^{*T} \mathbf{R}_{x} \mathbf{h}_{o} = \frac{\mathbf{w}_{o}^{*T} \mathbf{R}_{x}^{-1} \mathbf{R}_{x} \mathbf{R}_{x}^{-1} \mathbf{w}_{o}}{(\mathbf{w}_{o}^{*T} \mathbf{R}_{x}^{-1} \mathbf{w}_{o})^{2}} = \frac{1}{\mathbf{w}_{o}^{*T} \mathbf{R}_{x}^{-1} \mathbf{w}_{o}}$$

This is the ML power spectral estimate of the process at frequency ω_0 .

"MAXIMUM LIKELIHOOD" METHOD (SUMMARY)

The "Maximum Likelihood" spectral estimate is

$$\hat{S}_{ML}(e^{j\omega}) = \frac{1}{\mathbf{w}^{*T} \mathbf{R}_{\boldsymbol{x}}^{-1} \mathbf{w}}$$

where

$$\mathbf{w} = \begin{bmatrix} 1 \\ e^{j\omega} \\ e^{j2\omega} \\ \vdots \\ e^{j(N-1)\omega} \end{bmatrix}$$

CLASSICAL METHOD COMPARED TO "MAXIMUM LIKELIHOOD" METHOD

If the Fourier transform of the data sequence is

$$X(e^{j\omega}) = \sum_{n=0}^{N-1} x[n]e^{-j\omega n} = \mathbf{w}^{*T}x$$

the periodogram spectral estimate is defined by

$$\widehat{P}_x(e^{j\omega}) \stackrel{\text{def}}{=} \frac{1}{N} |X(e^{j\omega})|^2 = \frac{1}{N} X(e^{j\omega}) X^*(e^{j\omega}) = \frac{1}{N} \mathbf{w}^{*T} \mathbf{x} \mathbf{x}^{*T} \mathbf{w}$$

The expected value of this estimate is

$$\mathcal{E}\left\{\hat{P}_x(e^{j\omega})\right\} = \frac{1}{N}\mathbf{w}^{*T}\mathbf{R}_x\mathbf{w} \quad \text{while} \quad \hat{S}_{ML}(e^{j\omega}) = \frac{1}{\mathbf{w}^{*T}\mathbf{R}_x^{-1}\mathbf{w}}$$

RELATION BETWEEN ML AND ME

Use the triangular decomposition to write

$$\widehat{S}_{ML}^{-1}(e^{j\omega}) = \mathbf{w}^{*T} \mathbf{R}_{\boldsymbol{x}}^{-1} \mathbf{w} = \mathbf{w}^{*T} (\mathbf{U}_{1}^{-1})^{*T} \mathbf{D}_{U}^{-1} \mathbf{U}_{1}^{-1} \mathbf{w}$$

$$= \mathbf{w}^{*T} \begin{bmatrix} 1 & \cdots & 0 & 0 \\ a_{1}^{(N-1)} & \cdots & \vdots & \vdots \\ \vdots & \vdots & 1 & 0 \\ a_{N-1}^{(N-1)} & \cdots & a_{1}^{(1)} & 1 \end{bmatrix} \begin{bmatrix} \frac{1}{\sigma_{N-1}^{2}} & 0 & \cdots & 0 \\ \vdots & \ddots & \cdots & \vdots \\ 0 & \cdots & \frac{1}{\sigma_{1}^{2}} & 0 \\ 0 & \cdots & 0 & \frac{1}{\sigma_{2}^{2}} \end{bmatrix} \begin{bmatrix} 1 & \cdots & \cdots & a_{N-1}^{(N-1)*} \\ \vdots & \ddots & \cdots & \cdots \\ 0 & \cdots & 1 & a_{1}^{(1)*} \\ 0 & \cdots & 0 & 1 \end{bmatrix} \mathbf{w}$$

$$=\sum_{p=0}^{N-1} \frac{\left|\sum_{k=0}^{p} a_k^{(p)} e^{-j\omega k}\right|^2}{\sigma_p^2}$$

$$\left| \frac{1}{\widehat{S}_{ML}(e^{j\omega})} = \sum_{p=0}^{N-1} \frac{1}{\widehat{S}_{ME}^{(p)}(e^{j\omega})} \right|$$

SPECTRUM ANALYSIS: COMPARISON

$$R_x[l] = e^{-0.02l} \left(\cos 0.3\pi l + \frac{1}{15\pi} \sin 0.3\pi l\right) + 2e^{-0.04l} \left(\cos 0.6\pi l + \frac{1}{15\pi} \sin 0.6\pi l\right)$$
(11 samples)

COMPUTATION OF THE ML ESTIMATE

FASTEST METHOD:

1. Express the denominator as

$$\mathbf{w}^{*T} \hat{\mathbf{R}}_{\boldsymbol{x}}^{-1} \mathbf{w} = \sum_{k=-N}^{N} \varrho[k] e^{-\jmath \omega k}$$

where $\, \varrho[k] \,$ is the sum of terms on diagonals of $\, \hat{\mathbf{R}}_{m{x}}^{-1} \,$

2. Use the FFT to compute this term and take reciprocal

SUBSPACE METHODS

• Used for estimating discrete components in the spectrum of

$$x[n] = A_1 e^{j\omega_1 n} + A_2 e^{j\omega_2 n} + \dots + A_M e^{j\omega_M n} + \eta[n]$$

where $\eta[n]$ is white or colored "noise"

- ullet Estimate parameters ω_i and $\mathbf{P}_i = \mathcal{E}\left\{|A_i|^2\right\}$ $i=1,2,\ldots,M$
- Based on the concept that "signals" $s_i[n] = A_i e^{j\omega_i n}$ span a subspace of the vector space of observations
- \bullet The conditions $~\mathcal{E}\left\{A_iA_k^*\right\} = \mathcal{E}\left\{A_i\eta^*[n]\right\} = 0 \qquad (i \neq k)$ are assumed throughout

SUBSPACE AND AR MODELS COMPARED

SUBSPACE MODEL

$$s[n] = as[n-1]$$

$$x[n] = s[n] + w[n]$$

AR MODEL

$$s[n] = as[n-1] + w[n]$$

$$x[n] = s[n]$$

SIMPLEST PROBLEM

SIGNAL IN WHITE NOISE

$$x[n] = As[n] + \eta[n]$$
 where
$$s[n] = e^{\jmath \omega_{\rm O} n}$$
 and
$$A = |A|e^{\jmath \phi}$$

VECTOR FORM AND CORRELATION MATRIX

$$x = As + \eta$$
 $\left(x = [x[0] \ x[1] \ \cdots x[N-1]]^T\right)$

$$\mathbf{R}_{\boldsymbol{x}} = \mathcal{E}\left\{A\mathbf{s}(A\mathbf{s})^{*T}\right\} + \mathcal{E}\left\{\boldsymbol{\eta}\boldsymbol{\eta}^{*T}\right\}$$
$$= P_{o}\,\mathbf{s}\mathbf{s}^{*T} + \sigma_{o}^{2}\,\mathbf{I} \quad \text{where} \quad P_{o} = \mathcal{E}\left\{|A|^{2}\right\}$$

SIMPLEST PROBLEM (cont'd.)

Observe that

ullet The signal vector is an eigenvector of ${f R}_x$:

$$\mathbf{R}_{x}\mathbf{s} = (\mathsf{P}_{\mathsf{O}}\mathbf{s}\mathbf{s}^{*T} + \sigma_{\mathsf{O}}^{2}\mathbf{I})\mathbf{s} = \mathsf{P}_{\mathsf{O}}\mathbf{s}\mathbf{s}^{*T}\mathbf{s} + \sigma_{\mathsf{O}}^{2}\mathbf{s} = (N\mathsf{P}_{\mathsf{O}} + \sigma_{\mathsf{O}}^{2})\mathbf{s}$$

• All other eigenvectors have eigenvalues equal to σ_0^2 :

$$\mathbf{R} \boldsymbol{x} \, \mathbf{e}_i = \mathbf{P}_0 \, \mathbf{s} \, \underbrace{\mathbf{s}^{*T} \mathbf{e}_i}_{\mathbf{0}} + \sigma_0^2 \, \mathbf{e}_i = \sigma_0^2 \, \mathbf{e}_i$$

SIMPLEST PROBLEM: SOLUTION

- 1. Form the correlation matrix and compute its eigenvalues and eigenvectors.
- 2. Identify the N-1 smallest eigenvalues. These all have the same value, σ_0^2 .
- 3. Identify the remaining (largest) eigenvalue. It is equal to $NP_0 + \sigma_0^2$. Knowledge of its value and σ_0^2 determines P_0 .
- 4. The eigenvector corresponding to the largest eigenvalue is proportional to $\mathbf{s} = [1 \ e^{j\omega_0} \ e^{j2\omega_0} \ \cdots \ e^{j(N-1)\omega_0}]^T$. This in principle determines ω_0 .

TWO SIGNALS IN WHITE NOISE

OBSERVED SEQUENCE

$$x[n]=A_1s_1[n]+A_2s_2[n]+\eta[n]$$
 where $s_i[n]=e^{\jmath\omega_in}$ and $A_i=|A_i|e^{\jmath\phi_i}$

VECTOR FORM AND CORRELATION MATRIX

$$x = A_1 \mathbf{s}_1 + A_2 \mathbf{s}_2 + \eta$$

$$\mathbf{R}_{x} = P_{1}\mathbf{s}_{1}\mathbf{s}_{1}^{*T} + P_{2}\mathbf{s}_{2}\mathbf{s}_{2}^{*T} + \sigma_{0}^{2}\mathbf{I}$$
 where $P_{i} = \mathcal{E}\{|A_{i}|^{2}\}$

TWO SIGNALS IN WHITE NOISE (cont'd.)

• It is possible to find N-2 eigenvectors orthogonal to both s_1 and s_2 . These all have eigenvalues equal to σ_0^2 :

$$\mathbf{R}_{x}\mathbf{e}_{i} = \mathsf{P}_{1}\mathbf{s}_{1}\underbrace{\mathbf{s}_{1}^{*T}\mathbf{e}_{i}}_{\mathbf{0}} + \mathsf{P}_{2}\mathbf{s}_{2}\underbrace{\mathbf{s}_{2}^{*T}\mathbf{e}_{i}}_{\mathbf{0}} + \sigma_{0}^{2}\mathbf{I}\mathbf{e}_{i} = \sigma_{0}^{2}\mathbf{e}_{i}$$

- Remaining two eigenvectors lie in the subspace spanned by \mathbf{s}_1 and \mathbf{s}_2 .
- Subspace spanned by s_1 and s_2 is the <u>signal subspace</u>. Complementary subspace is called the <u>noise subspace</u>.

SIGNAL AND NOISE SUBSPACES

GENERAL PROBLEM FORMULATION: M SIGNALS IN WHITE NOISE

OBSERVED SEQUENCE AND VECTOR FORM

$$x[n] = \sum_{i=1}^{M} A_i s_i[n] + \eta[n] \qquad \iff \qquad x = \sum_{i=1}^{M} A_i s_i + \eta$$

CORRELATION MATRIX

$$\mathbf{R}_{x} = \sum_{i=1}^{M} P_{i} \mathbf{s}_{i} \mathbf{s}_{i}^{*T} + \sigma_{o}^{2} \mathbf{I}$$
 or $\mathbf{R}_{x} = \mathbf{S} \mathbf{P}_{o} \mathbf{S}^{*T} + \sigma_{o}^{2} \mathbf{I}$

where

$$\mathbf{S} = \begin{bmatrix} \mid & \mid & & \mid & \mid \\ \mathbf{s}_1 & \mathbf{s}_2 & \cdots & \mathbf{s}_M \\ \mid & \mid & & \mid \end{bmatrix} \quad \text{and} \quad \mathbf{P}_0 = \begin{bmatrix} \mathsf{P}_1 & \mathsf{0} & \cdots & \mathsf{0} \\ \mathsf{0} & \mathsf{P}_2 & \cdots & \mathsf{0} \\ \vdots & \vdots & \ddots & \vdots \\ \mathsf{0} & \mathsf{0} & \cdots & \mathsf{P}_M \end{bmatrix}$$

RESULTS FOR THE GENERAL PROBLEM

- ullet The M signal vectors $\mathbf{s}_1,\ldots,\mathbf{s}_M$ define the signal subspace.
- The first M eigenvectors of \mathbf{R}_{x} (corresponding to the *largest* eigenvalues) span the signal subspace. These eigenvectors have eigenvalues $> \sigma_0^2$.
- The remaining N-M eigenvectors define the *noise subspace*. These all have eigenvalues equal to σ_0^2 .
- The signal and noise subspaces are orthogonal and complementary.

SIGNALS IN COLORED NOISE

OBSERVATION VECTOR AND CORRELATION MATRIX

$$x = \sum_{i=1}^{M} A_i \mathbf{s}_i + \eta$$
 $\mathbf{R}_{x} = \mathbf{SP}_0 \mathbf{S}^{*T} + \sigma_0^2 \mathbf{\Sigma}_{\eta}$

MAHALANOBIS WHITENING TRANSFORMATION

$$y = \Sigma_{oldsymbol{\eta}}^{-1/2} x \implies \mathrm{R} y = \mathrm{TP}_{\mathrm{O}} \mathrm{T}^{*T} + \sigma_{\mathrm{O}}^{2} \mathrm{I}; \quad \mathrm{T} = \Sigma_{oldsymbol{\eta}}^{-1/2} \mathrm{S}$$

Signal and noise subspace eigenvectors \mathbf{e}_k' in the transformed space are represented in the original space by

$$\mathbf{b}_k = \mathbf{\Sigma}_{oldsymbol{\eta}}^{1/2} \mathbf{e}_k'$$

WHITENING TRANSFORMATION

EIGENVALUE PROBLEM: COLORED NOISE

• The eigenvalue problem $\mathbf{R}_{m{y}}\mathbf{e}_k' = \left(\Sigma_{m{\eta}}^{-1/2}\mathbf{R}_{m{x}}\Sigma_{m{\eta}}^{-1/2}\right)\mathbf{e}_k' = \lambda_k\mathbf{e}_k'$ in the transformed space can be replaced by a *generalized* eigenvalue problem in the original space

$$\mathbf{R}_{m{x}}\mathbf{e}_k = \lambda_k \mathbf{\Sigma}_{m{\eta}}\mathbf{e}_k \hspace{0.5cm} \left(ext{where} \hspace{0.2cm} \mathbf{e}_k = \mathbf{\Sigma}_{m{\eta}}^{-1/2}\mathbf{e}_k'
ight)$$

• The signal and noise subspaces are then spanned by the basis vectors $\{\mathbf{b}_1,\dots,\mathbf{b}_M\}$ and $\{\mathbf{b}_{M+1},\dots,\mathbf{b}_N\}$ respectively, where

$$\mathbf{b}_k = \Sigma \boldsymbol{\eta} \, \mathbf{e}_k \,, \quad k = 1, 2, \dots, N$$

MATRICES RELATED TO SUBSPACES

EIGENVECTOR MATRICES

$$\mathbf{E}_{sig} = \left[egin{array}{cccc} | & | & | & | \ \mathbf{e}_1 & \mathbf{e}_2 & \cdots & \mathbf{e}_M \ | & | & | \end{array}
ight]$$

$$\mathbf{E}_{sig} = \left| egin{array}{ccccc} \mathbf{e}_1 & \mathbf{e}_2 & \cdots & \mathbf{e}_M \ \mathbf{e}_1 & \mathbf{e}_1 & \mathbf{e}_2 & \cdots & \mathbf{e}_M \ \mathbf{e}_1 & \mathbf{e}_2 & \cdots & \mathbf{e}_N \end{array}
ight|$$

EIGENVALUE MATRICES

$$oldsymbol{\Lambda}_{sig} = \left[egin{array}{cccc} \lambda_1 & 0 & \cdots & 0 \ 0 & \lambda_2 & \cdots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \cdots & \lambda_M \end{array}
ight]$$

$$oldsymbol{\Lambda}_{sig} = \left[egin{array}{ccccc} \lambda_1 & 0 & \cdots & 0 \ 0 & \lambda_2 & \cdots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \cdots & \lambda_M \end{array}
ight] \qquad oldsymbol{\Lambda}_{noise} = \left[egin{array}{ccccc} \sigma_{
m o}^2 & 0 & \cdots & 0 \ 0 & \sigma_{
m o}^2 & \cdots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \cdots & \sigma_{
m o}^2 \end{array}
ight]$$

VARIOUS IMPORTANT RELATIONS

EIGENVECTOR AND EIGENVALUE MATRICES

$$\mathbf{E} = \left[egin{array}{ccc} \mathbf{E}_{sig} & \mathbf{E}_{noise} \end{array}
ight] \qquad \qquad oldsymbol{\Lambda} = \left[egin{array}{ccc} oldsymbol{\Lambda}_{sig} & oldsymbol{0} \ oldsymbol{0} & oldsymbol{\Lambda}_{noise} \end{array}
ight]$$

CORRELATION MATRIX AND INVERSE

$$\mathbf{R}_{\boldsymbol{x}} = \mathbf{E}_{sig} \boldsymbol{\Lambda}_{sig} \mathbf{E}_{sig}^{*T} + \mathbf{E}_{noise} \boldsymbol{\Lambda}_{noise} \mathbf{E}_{noise}^{*T}$$

$$\mathbf{R}_{m{x}}^{-1} = \mathbf{E}_{sig} \mathbf{\Lambda}_{sig}^{-1} \mathbf{E}_{sig}^{*T} + \mathbf{E}_{noise} \mathbf{\Lambda}_{noise}^{-1} \mathbf{E}_{noise}^{*T}$$

PROJECTION MATRICES

$$oldsymbol{P}_{siq} = \mathrm{E}_{siq} \mathrm{E}_{siq}^{*T} \qquad oldsymbol{P}_{noise} = \mathrm{E}_{noise} \mathrm{E}_{noise}^{*T} = \mathrm{I} - oldsymbol{P}_{siq}$$

PARTICULAR SUBSPACE METHODS

- Pisarenko Harmonic Decomposition
- MUSIC
- Minimum Norm
- Principal Components Linear Prediction
- ESPRIT

PISARENKO HARMONIC DECOMPOSITION

Assume M signals with unknown frequencies $\omega_1, \omega_2, \ldots, \omega_M$.

Take N=M+1 and note that \mathbf{e}_N is orthogonal to each signal vector \mathbf{s}_i .

Since
$$\mathbf{w} = \begin{bmatrix} 1 \\ e^{\jmath\omega} \\ e^{\jmath2\omega} \\ \vdots \\ e^{\jmath(N-1)\omega} \end{bmatrix}$$
 while $\mathbf{s}_i = \begin{bmatrix} 1 \\ e^{\jmath\omega_i} \\ e^{\jmath2\omega_i} \\ \vdots \\ e^{\jmath(N-1)\omega_i} \end{bmatrix}$

it follows that

$$\mathbf{w}^{*T}\mathbf{e}_{N}\big|_{\omega=\omega_{i}}=0$$
; $i=1,2,\ldots,M$

PISARENKO PSEUDOSPECTRUM

This function peaks at the signal frequencies.

PISARENKO - ROOT METHOD

Define the eigenfilter

$$E_N(z) = e_N[0] + e_N[1]z^{-1} + \dots + e_N[N-1]z^{-(N-1)}$$

where the $e_N[n]$ are components of the eigenvector \mathbf{e}_N .

Then

$$E_N(e^{j\omega}) = \mathbf{w}^{*T} \mathbf{e}_N$$

which goes to zero for $\omega = \omega_1, \omega_2, \dots, \omega_M$. Therefore ...

PISARENKO - ROOT METHOD (cont'd.)

• The M roots of $E_N(z)$ occurring on the unit circle correspond to the signal frequencies $\omega_1, \omega_2, \ldots, \omega_M$.

ullet The pseudospectrum can also be written in terms of $\ensuremath{E_{N}}(z)$ as

$$\hat{P}_P(e^{j\omega}) = \frac{1}{|E_N(e^{j\omega})|^2} = \frac{1}{E_N(e^{j\omega})E_N^*(e^{j\omega})}$$

SIGNAL POWER ESTIMATION (M=2)

Write

$$\mathbf{e}_{1}^{*T}\mathbf{R}_{x}\mathbf{e}_{1} = \mathsf{P}_{1}\mathbf{e}_{1}^{*T}\mathbf{s}_{1}\mathbf{s}_{1}^{*T}\mathbf{e}_{1} + \mathsf{P}_{2}\mathbf{e}_{1}^{*T}\mathbf{s}_{2}\mathbf{s}_{2}^{*T}\mathbf{e}_{1} + \sigma_{0}^{2} = \lambda_{1}$$

$$\mathbf{e}_{2}^{*T}\mathbf{R}_{x}\mathbf{e}_{2} = \mathsf{P}_{1}\mathbf{e}_{2}^{*T}\mathbf{s}_{1}\mathbf{s}_{1}^{*T}\mathbf{e}_{2} + \mathsf{P}_{2}\mathbf{e}_{2}^{*T}\mathbf{s}_{2}\mathbf{s}_{2}^{*T}\mathbf{e}_{2} + \sigma_{0}^{2} = \lambda_{2}$$

These are linear equations of the form

$$\begin{bmatrix} |\beta_{11}|^2 & |\beta_{12}|^2 \\ |\beta_{21}|^2 & |\beta_{22}|^2 \end{bmatrix} \begin{bmatrix} P_1 \\ P_2 \end{bmatrix} = \begin{bmatrix} \lambda_1 - \sigma_0^2 \\ \lambda_2 - \sigma_0^2 \end{bmatrix} \quad \text{where} \quad \beta_{ik} = \mathbf{e}_i^{*T} \mathbf{s}_k$$

These can be solved for P_1 and P_2 .

MUSIC (MULTIPLE SIGNAL CLASSIFICATION)

- Uses correlation matrix of any size N > M + 1
- ullet Can be used to estimate the number of signals M

MUSIC: FREQUENCY ESTIMATION

PSEUDOSPECTRUM

$$\hat{P}_{MU}(e^{j\omega}) = \frac{1}{\mathbf{w}^{*T} \mathbf{P}_{noise} \mathbf{w}} = \frac{1}{\mathbf{w}^{*T} \mathbf{E}_{noise} \mathbf{E}_{noise}^{*T} \mathbf{w}} = \frac{1}{\sum_{i=M+1}^{N} |E_i(e^{j\omega})|^2}$$

ROOT METHOD (ROOT MUSIC)

Find roots of polynomial

$$\hat{P}_{MU}^{-1}(z) = \sum_{i=M+1}^{N} E_i(z) E_i^*(1/z^*)$$

lying on the unit circle, where $E_i(z)$ is an eigenfilter.

Remaining roots are called "spurious."

MUSIC VARIATION

An alternative pseudospectrum can be defined as

$$\hat{P}'_{MU}(e^{j\omega}) = \frac{1}{\mathbf{w}^{*T}(\sum_{i=M+1}^{N} \frac{1}{\lambda_i} \mathbf{e}_i \mathbf{e}_i^{*T})\mathbf{w}}$$

In theory, this is equivalent to $\frac{\sigma_0^2}{\mathbf{w}^{*T}(\sum_{i=M+1}^N \mathbf{e}_i \mathbf{e}_i^{*T})\mathbf{w}}$ which differs from the regular MUSIC pseudospectrum by only a constant.

In practice, however, by using the estimated eigenvalues $\lambda_M, \dots \lambda_N$ the performance is sometimes inproved.

COMPARISON OF METHODS

$$\begin{array}{ll} \text{Maximum Likelihood} & \widehat{S}_{ML}(e^{\jmath\omega}) = \frac{1}{\mathbf{w}^{*T}\mathbf{R}_{\boldsymbol{x}}^{-1}\mathbf{w}} \\ \\ \text{Maximum Entropy} & \widehat{S}_{ME}(e^{\jmath\omega}) = \frac{\sigma_{N-1}^2}{\mathbf{w}^{*T}\mathbf{a}_{N-1}\mathbf{a}_{N-1}^{*T}\mathbf{w}} \\ \\ \text{MUSIC} & \widehat{P}_{MU}'(e^{\jmath\omega}) = \frac{1}{\mathbf{w}^{*T}\sum_{i=M+1}^{N}\frac{1}{\lambda_i}\mathbf{e}_i\mathbf{e}_i^{*T}\mathbf{w}} \end{array}$$

 All represent different decompositions of the inverse correlation matrix!

MINIMUM-NORM PROCEDURE

- The frequency vector \mathbf{w} is projected onto a *single vector* \mathbf{d} lying in the *noise subspace*. The vector \mathbf{d} is chosen to have *minimum norm* $\|\mathbf{d}\|$ subject to the constraint d[0] = 1.
- If the noise subspace eigenvector matrix is partitioned as

$$\mathbf{E}_{noise} = \left[egin{array}{c} \mathbf{c}^{*T} \ \mathbf{E}'_{noise} \end{array}
ight] \hspace{0.5cm} ext{then} \hspace{0.5cm} \mathbf{d} = \left[egin{array}{c} 1 \ \mathbf{E}'_{noise} \mathbf{c}/(\mathbf{c}^{*T}\mathbf{c}) \end{array}
ight]$$

• d can also be interpreted as the *total least squares* solution to the *linear prediction* problem for the data [Dowling and DeGroat, 1991].

MINIMUM-NORM: FREQUENCY ESTIMATION

PSEUDOSPECTRUM

$$\widehat{P}_{MN}(e^{j\omega}) \stackrel{\text{def}}{=} \frac{1}{|\mathbf{w}^{*T}\mathbf{d}|^2} = \frac{1}{\mathbf{w}^{*T}\mathbf{d}\mathbf{d}^{*T}\mathbf{w}} = \frac{1}{|D(e^{j\omega})|^2}$$

ROOT METHOD

Find roots of the polynomial

$$D(z) = \sum_{k=0}^{N-1} d[k]z^{-k}$$

lying on the unit circle (d[k] are components of d).

WHY MINIMUM NORM?

The polynomial D(z) can be factored as

$$D(z) = D_1(z) \cdot D_2(z)$$

where

- $D_1(z)$ has roots only *on* the unit circle (due to signals)
- $D_2(z)$ has roots only within the unit circle (spurious roots)

In other words, $D_2(z)$ is a minimum-phase polynomial.

The roots of $D_2(z)$ are approximately uniformly distributed around the inside of the unit circle, away from the roots of $D_1(z)$.

MINIMUM-NORM SOLUTION (GENERAL PROCEDURE)

- It is desired to minimize $\|\mathbf{d}\|^2 = \mathbf{d}^{*T}\mathbf{d}$
- Constraints are

$$\mathbf{d} = P_{noise}\mathbf{d} = \mathbf{E}_{noise}\mathbf{E}_{noise}^{*T}\mathbf{d}$$
 and $\mathbf{d}^{*T}\iota = 1$

Form the Lagrangian

$$\mathcal{L} = \mathbf{d}^{*T}\mathbf{d} + \mu(1 - \mathbf{d}^{*T}\mathbf{E}_{noise}\mathbf{E}_{noise}^{*T}\iota) + \mu^{*}(1 - \iota^{T}\mathbf{E}_{noise}\mathbf{E}_{noise}^{*T}\mathbf{d})$$

• Set $\nabla_{\mathbf{d}^*} \mathcal{L} = \mathbf{0}$ and solve for \mathbf{d} (see text for details).

PRINCIPAL COMPONENTS LINEAR PREDICTION

 Principal components methods use the principal components approximation to the correlation matrix, or its principal components inverse

$$\mathbf{R}_{\boldsymbol{x}}^{(M)} \stackrel{\text{def}}{=} \sum_{i=1}^{M} \lambda_i \mathbf{e}_i \mathbf{e}_i^{*T} \qquad \mathbf{R}_{\boldsymbol{x}}^{+(M)} = \sum_{i=1}^{M} \frac{1}{\lambda_i} \mathbf{e}_i \mathbf{e}_i^{*T}$$

 The Principal Components Linear Prediction method [Tufts and Kumaresan, 1982] exploits this technique to produce a highly effective procedure for the estimation of complex exponentials (or sinusoids) in noise.

LINEAR PREDICTION FOR COMPLEX EXPONENTIAL SIGNALS AND NO NOISE

CORRELATION MATRIX

NORMAL EQUATIONS

$$\mathbf{R}_{m{x}} = \mathbf{R}_{m{s}} = \sum_{i=1}^{M} \mathsf{P}_{i} \mathbf{s}_{i} \mathbf{s}_{i}^{*T} = \mathbf{S}^{*T} \mathbf{P}_{o} \mathbf{S}$$
 $\mathbf{R}_{m{x}} \mathbf{a} = \mathbf{0}$

- ullet a is an eigenvector corresponding to eigenvalue $\lambda=0$.
- a lies in the noise subspace $(\mathbf{s}_i^{*T}\mathbf{a} = \mathbf{0})$.
- ullet The "noise subspace" is the null space of ${f R}_{m x}$.

LINEAR PREDICTION: NO NOISE (cont'd.)

• The prediction error filter suggests a pseudospectrum

$$\widehat{P}_x(e^{j\omega}) = \frac{1}{|\mathbf{w}^{*T}\mathbf{a}|^2} = \frac{1}{|A(e^{j\omega})|^2}$$

which peaks at the desired frequencies.

• For N>M+1 the Normal equations $\mathbf{R}_{x}\mathbf{a}=\mathbf{0}$ have multiple solutions. Choose the minimum-norm solution.

LINEAR PREDICTION: NO NOISE (cont'd.)

MINIMUM-NORM SOLUTION

By dropping the top row of the matrix $\mathbf{R}_{m{x}}$ and defining

$$\mathbf{a} = egin{bmatrix} 1 \\ \mathbf{a}' \end{bmatrix}$$
 the Normal equations $\mathbf{R}_{m{x}}\mathbf{a} = \mathbf{0}$ can be reduced to

$$R_x'a' = -r$$

The minimum-norm solution can then be expressed as

$$\mathbf{a}' = -\mathbf{R}_{x}'^{+}\mathbf{r} = -\sum_{i=1}^{M} \left(\frac{\mathbf{e}_{i}'^{*T}\mathbf{r}}{\lambda_{i}'}\right)\mathbf{e}_{i}'$$

LINEAR PREDICTION WITH NOISE

The Normal equations $\mathbf{R}_{x}\mathbf{a}=\sigma^{2}\iota$ have the solution

$$\mathbf{a}' = -\sum_{i=1}^{P} \left(\frac{\mathbf{e}_i'^{*T} \mathbf{r}}{\lambda_i'} \right) \mathbf{e}_i' ; \quad P = N - 1$$

The PCLP method instead uses

$$\mathbf{a}' = -\sum_{i=1}^{M} \left(\frac{\mathbf{e}_i'^{*T} \mathbf{r}}{\lambda_i'} \right) \mathbf{e}_i' = -\mathbf{R}_x'^{+(M)} \mathbf{r}$$

If noise power is not too large, eigenvectors e'_i for i = 1, 2, ..., M are approximately the same as without noise.

PCLP: FREQUENCY ESTIMATION

PSEUDOSPECTRUM

$$\widehat{P}_{PCLP}(e^{j\omega}) = \frac{1}{|\mathbf{w}^{*T}\mathbf{a}|^2} = \frac{1}{|A(e^{j\omega})|^2}$$

with
$$\mathbf{a} = \begin{bmatrix} 1 \ \mathbf{a}'^T \end{bmatrix}^T$$
 and $\mathbf{a}' = -\mathbf{R}_{\boldsymbol{x}}'^{+(M)}\mathbf{r}$.

ROOT METHOD

Find roots lying on the unit circle of

$$A(z) = \sum_{k=0}^{P} a_k z^{-k}$$

TEST CASE: LP VS PCLP

- Data: $\mathbf{x}[n]=e^{\jmath 1.00\pi n+\pi/4}+e^{\jmath 1.04\pi n}+\eta[n]$; $N_s=25$ samples $\eta[n]$ is white noise with SNR $=-10\log_{10}\sigma_0^2=10$ dB.
- Roots of A(z) are plotted for various prediction orders P using the modified covariance method (50 trials per plot).
- For $P = N_s M/2$ the rank of \mathbf{R}'_x is reduced to M (= 2). This is called the "Kumaresan-Prony" case.
- Recommended prediction order for PCLP is $P \approx \frac{3}{4}N_s$.

LINEAR PREDICTION RESULTS

PCLP RESULTS FOR M=2

PCLP PSEUDOSPECTRA FOR P = 18

ESPRIT

(<u>ES</u>TIMATION OF <u>S</u>IGNAL <u>P</u>ARAMETERS VIA <u>R</u>OTATIONAL <u>I</u>NVARIANCE <u>T</u>ECHNIQUES)

- Exploits an invariance principle that naturally exists for discrete time signals
- Original technique described first to motivate the method
- Current TLS version then described

ESPRIT SIGNAL MODEL

$$x = \sum_{i=1}^{M} A_i \mathbf{s}_i + \eta$$

$$x' = \sum_{i=1}^{M} A_i \mathbf{s}'_i + \eta'$$

Note that
$$\mathbf{s}_i' = \begin{bmatrix} e^{\jmath \omega_i} & e^{\jmath 2\omega_i} & \cdots & e^{\jmath N\omega_i} \end{bmatrix}^T = e^{\jmath \omega_i} \mathbf{s}_i$$

ESPRIT FORMULATION

$$\mathbf{R}_{x} = \sum_{i=1}^{M} \mathsf{P}_{i} \mathbf{s}_{i} \mathbf{s}_{i}^{*T} + \sigma_{\mathsf{O}}^{2} \mathbf{I} = \mathbf{S} \mathbf{P}_{\mathsf{O}} \mathbf{S}^{*T} + \sigma_{\mathsf{O}}^{2} \mathbf{I}$$

$$\mathbf{R}_{\boldsymbol{x}\boldsymbol{x}'} = \sum_{i=1}^{M} \mathbf{P}_{i} e^{-\jmath \omega_{i}} \mathbf{s}_{i} \mathbf{s}_{i}^{*T} + \sigma_{0}^{2} \mathbf{D}_{-1} = \mathbf{S} \mathbf{P}_{0} \boldsymbol{\Phi}^{*} \mathbf{S}^{*T} + \sigma_{0}^{2} \mathbf{D}_{-1}$$

where

$$\Phi = \left[egin{array}{cccc} e^{\jmath \omega_1} & 0 & \cdots & 0 \ 0 & e^{\jmath \omega_2} & \cdots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \cdots & e^{\jmath \omega_M} \end{array}
ight] \qquad \qquad \mathbf{D}_{-1} = \left[egin{array}{cccc} 0 & 0 & \cdots & 0 \ 1 & 0 & \cdots & 0 \ dots & \ddots & \ddots & dots \ 0 & \cdots & 1 & 0 \end{array}
ight]$$

IDENTIFYING THE FREQUENCIES

Form
$$\mathbf{R}_s \stackrel{\text{def}}{=} \mathbf{R}_x - \sigma_0^2 \mathbf{I} = \mathbf{S} \mathbf{P}_0 \mathbf{S}^{*T}$$

and
$$\mathbf{R}_{ss'} \stackrel{\text{def}}{=} \mathbf{R}_{xx'} - \sigma_0^2 \mathbf{D}_{-1} = \mathbf{SP}_0 \mathbf{\Phi}^* \mathbf{S}^{*T}$$

Then consider

$$\mathbf{R}_{s}\check{\mathbf{e}} - \check{\lambda}\mathbf{R}_{ss'}\check{\mathbf{e}} = \mathbf{SP}_{0}(\mathbf{I} - \check{\lambda}\Phi^{*})\mathbf{S}^{*T}\check{\mathbf{e}}$$

$$= \mathbf{SP_0} \begin{bmatrix} 1 - \check{\lambda}e^{-\jmath\omega_1} & \cdots & 0 \\ 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & 0 & 1 - \check{\lambda}e^{-\jmath\omega_M} \end{bmatrix} \mathbf{S}^{*T} \check{\mathbf{e}} = \mathbf{0}$$

Since $\check{\lambda}_k=e^{\jmath\omega_k}$ reduces the rank of this matrix, λ_k is a generalized eigenvalue of

$$\mathbf{R}_{s}\,\check{\mathbf{e}}=\check{\lambda}\mathbf{R}_{ss'}\,\check{\mathbf{e}}$$

ESPRIT FREQUENCY ESTIMATE RESULTS

N = 7

SNR = 20 dB

Frequency values:

$$\omega_1 = 0.10\pi$$

$$\omega_2 = 0.12\pi$$

$$\omega_3 = 0.22\pi$$

PROBLEM WITH ORIGINAL FORMULATION

ullet The matrices ${f R}_{{m s}}$ and ${f R}_{{m s}{m s}'}$ are not of full rank and have identical null spaces. Therefore the generalized eigenvalue problem

$$\mathbf{R}_{s}\,\check{\mathbf{e}}=\check{\lambda}\mathbf{R}_{ss'}\,\check{\mathbf{e}}$$

is ill-posed.

- ullet Since the matrices are not of full rank, the eigenvalues $\check{\lambda}$ corresponding to "eigenvectors" $\check{\mathbf{e}}$ in the null-space of these matrices can assume any value and so are not defined!
- ullet In practice, \mathbf{R}_s and $\mathbf{R}_{ss'}$ may not have zero rank, but will be at least poorly conditioned.

TLS ESPRIT

- ullet Exploits an invariance property of the signal subspaces similar to the invariance property of ${f R}_{m s}$ and ${f R}_{m ss'}$.
- Relates to the theory of a matrix "pencil" and rank-reducing numbers.
- A least squares version of *ESPRIT* is also possible but the total least squares version is preferable.

DEFINITION OF EXPANDED VECTORS

• The overbar will be used to refer to quantities relating to the expanded vectors.

APPLICATION OF INVARIANCE

The signal subspace is spanned by columns of the matrix

$$\bar{\mathbf{S}} \stackrel{\mathsf{def}}{=} \left[\begin{array}{ccc} | & | & & | \\ \bar{\mathbf{s}}_1 & \bar{\mathbf{s}}_2 & \cdots & \bar{\mathbf{s}}_M \\ | & | & & | \end{array} \right] = \left[\begin{array}{ccc} \mathbf{S} & \\ & & \\ \times & \cdots & \times \end{array} \right] = \left[\begin{array}{ccc} \times & \cdots & \times \\ & & \\ & \mathbf{S}\Phi \end{array} \right]$$

Any other set of basis vectors for the signal subspace

$$ar{\mathbf{B}} = \left[egin{array}{cccc} ar{\mathbf{b}}_1 & ar{\mathbf{b}}_2 & \cdots & ar{\mathbf{b}}_M \\ ert & ert & ert \end{array}
ight]$$

can be related to $\bar{\mathbf{S}}$ by a nonsingular transformation

$$\bar{B}\Upsilon = \bar{S}$$

APPLICATION OF INVARIANCE (cont'd.)

The relation $\bar{\mathbf{B}}\Upsilon = \bar{\mathbf{S}}$ can be written in two forms:

$$ar{\mathbf{B}}\mathbf{\Upsilon} = \left[egin{array}{cccc} \mathbf{B} & & & \\ & & & \\ imes & \cdots & imes \end{array}
ight]\mathbf{\Upsilon} = \left[egin{array}{cccc} \mathbf{S} & & \\ & & & \\ imes & \cdots & imes \end{array}
ight]$$

and

$$ar{\mathbf{B}}\mathbf{\Upsilon} = \left[egin{array}{ccc} imes & \cdots & imes \ & \mathbf{B}' \end{array}
ight]\mathbf{\Upsilon} = \left[egin{array}{ccc} imes & \cdots & imes \ & \mathbf{S}\mathbf{\Phi} \end{array}
ight]$$

Thus

$$B'\Upsilon = S\Phi = (B\Upsilon)\Phi \implies B'\Upsilon = B\Upsilon\Phi$$

The last equation can be rewritten as . . .

ESPRIT FUNDAMENTAL RELATIONS

INVARIANCE OF SUBSPACES

$$\mathbf{B}\Psi=\mathbf{B}'$$
 (solve for Ψ)

EIGEN-DECOMPOSITION OF TRANSFORMATION

$$\Psi = \Upsilon \Phi \Upsilon^{-1}$$

ullet Eigenvalues of Ψ have the form $e^{\jmath\omega_k}$

IMPLEMENTATION OF ESPRIT

- ullet Basis vectors $ar{\mathbf{B}}$ can be found as eigenvectors of the correlation matrix, a la MUSIC.
- In theory the invariance relation

$$B\Psi = B'$$

is satisfied *exactly.* In practice, this is an overdetermined set of linear equations.

 Least squares solution produces LS version; total least squares solution leads to TLS version of ESPRIT.

TLS ESPRIT SOLUTION

The TLS problem associated with ESPRIT is to find Ψ in the equation

$$(B - \Delta)\Psi = B' - \Delta'$$

to minimize $\parallel \mathbf{\Delta} \parallel_F$.

(This is a generalization of the TLS problem described earlier.)

Define
$$V = \begin{bmatrix} V_{11} & V_{12} \\ V_{21} & V_{22} \end{bmatrix}$$

as the matrix of *right singular vectors* of the matrix $\begin{bmatrix} \mathbf{B} & \mathbf{B}' \end{bmatrix}$.

The TLS solution is given by $\Psi_{TLS} = -\mathbf{V}_{12}\mathbf{V}_{22}^{-1}$.

ESPRIT ALGORITHM SUMMARY

- 1. Define the N+1-dimensional random vector \bar{x} pertaining to N+1 consecutive data samples $x[0],x[1],\ldots,x[N]$ and estimate the correlation matrix $\hat{\mathbf{R}}_{\bar{x}}$ from the data. [Usually the covariance method or the modified covariance method should be used here, especially if the total length of the data record (N_s) is small.]
- 2. Compute the generalized eigenvectors and eigenvalues of $\hat{\mathbf{R}}_{ar{x}}$:

$$\hat{\mathbf{R}}_{\bar{\boldsymbol{x}}}\bar{\mathbf{e}}_k = \bar{\lambda}_k \boldsymbol{\Sigma}_{\bar{\boldsymbol{\eta}}}\bar{\mathbf{e}}_k$$
 $k = 1, 2, \dots, N+1$

3. If necessary, estimate the number of signals M.

ESPRIT (cont'd.)

4. Generate a basis spanning the signal subspace and partition it as

$$ar{\mathbf{B}} = oldsymbol{\Sigma}_{ar{oldsymbol{\eta}}} egin{bmatrix} ert & \mathbf{e}_1 & \cdots & ert & \mathbf{e}_M \ ert & ert & ert \end{bmatrix} = egin{bmatrix} \mathbf{B} \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & \ & & \ &$$

5. Compute the matrix ${f V}$ of right singular vectors of

$$\begin{bmatrix} \mathbf{B} & \mathbf{B'} \end{bmatrix}$$

and partition V into four $M \times M$ submatrices

$$\mathbf{V} = \left[\begin{array}{cc} \mathbf{V}_{11} & \mathbf{V}_{12} \\ \mathbf{V}_{21} & \mathbf{V}_{22} \end{array} \right]$$

ESPRIT (cont'd.)

- 6. Compute the eigenvalues $\lambda_1,\lambda_2,\dots,\lambda_M$ of the matrix $\Psi_{TLS}=-\mathbf{V}_{12}\mathbf{V}_{22}^{-1}$.
- 7. Find the desired frequencies as

$$\omega_k = \angle \lambda_k \qquad \qquad k = 1, 2, \dots, M$$

"SIGNAL COPY" FEATURE OF ESPRIT

Estimates for the signal amplitudes can be made using

$$\left[egin{array}{c} \widehat{A}_1 \ \widehat{A}_2 \ \widehat{A}_M \end{array}
ight] = \mathbf{W}_{SC}^{*T} ar{x}$$

where

$$\mathbf{W}_{SC} = \mathbf{\bar{S}} \left(\mathbf{\bar{S}}^{*T} \mathbf{\bar{S}} \right)^{*T}$$

• Estimates approach true values as $\sigma_0^2 \to 0$.

COMPUTATIONAL CONSIDERATIONS FOR SUBSPACE METHODS

- Avoiding computation of the correlation matrix
 - Use of the data matrix and SVD
- Statistical methods for estimating the number of signals
- Evaluating the pseudospectrum

AVOIDING THE CORRELATION MATRIX

- Eigenvalues/vectors can be found from the SVD of the data matrix \mathbf{X} (assuming $\hat{\mathbf{R}}_{x} = \mathbf{X}^{*T}\mathbf{X}$)
- For PCLP the filter coefficients can be found from

$$\mathbf{a}' = -\mathbf{X}_1^{+(M)}\mathbf{x}_0$$
 where $\mathbf{X} = \left[egin{array}{ccc} \mathbf{x}_0 & \mathbf{X}_1 \\ \mathbf{x}_1 & \mathbf{x}_1 \end{array}
ight]$

and $\mathbf{X}_1^{+(M)}$ denotes the rank M pseudoinverse of \mathbf{X}_1 .

For the Kumaresan-Prony case a simple computation is

$$\mathbf{X}_{1}^{+(M)} = \mathbf{X}_{1}^{+} = \mathbf{X}_{1}^{*T} (\mathbf{X}_{1} \mathbf{X}_{1}^{*T})^{-1}$$

STATISTICAL ESTIMATION OF M

1. Find M to minimize either AIC or MDL:

$${\rm AIC}(M) \ = \ -2K(N-M) \ln \varrho(M) + 2M(2N-M)$$

$${\rm MDL}(M) \ = \ -K(N-M) \ln \varrho(M) + \frac{1}{2}M(2N-M) \ln K$$
 where

$$\varrho(M) = \frac{(\lambda_{M+1}\lambda_{M+2}\cdots\lambda_{N})^{\frac{1}{N-M}}}{\frac{1}{N-M}(\lambda_{M+1}+\lambda_{M+2}+\cdots+\lambda_{N})}$$

2. Estimate the noise power as

$$\widehat{\sigma}_{0}^{2} = \frac{1}{N - M} \left(\lambda_{M+1} + \lambda_{M+2} + \dots + \lambda_{N} \right)$$

COMPUTING THE PSEUDOSPECTRUM

For estimates involving a single vector, use FFT of vector.
 Example:

$$\hat{P}_{MN}(e^{j\omega}) = \frac{1}{|\mathbf{w}^{*T}\mathbf{d}|^2}$$
 Compute FFT $\{d[n]\}$

• For estimates involving a matrix, such as

$$\hat{P}_{MU}(e^{j\omega}) = \frac{1}{\mathbf{w}^{*T} \boldsymbol{P}_{noise} \mathbf{w}}$$

use procedure similar to computation of the ML spectral estimate.